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Industrial structure systems may have non-linearity, and are also sometimes exposed to
the danger of earthquake. In the design of such system, these factors should be accounted
for from the viewpoint of reliability. This paper proposes a method to analyze seismic
response and reliability design of a complex non-linear structure system under random
excitation. The actual random excitation is represented to the corresponding Gaussian
process for the statistical analysis. Then, the non-linear system is subjected to this random
process. The non-linear structure system is modelled by substructure synthesis method
(SSM) procedure. The non-linear equations are expanded sequentially. Then, the perturbed
equations are solved in probabilistic method. Several statistical properties of a random
process that are of interest in random vibration applications are reviewed in accordance
with the non-linear stochastic problem. The system performance condition in the design of
system is that responses caused by random excitation be limited within safe bounds. Thus,
the reliability of the system is considered according to the crossing theory. Comparing with
the results of the numerical simulation proved the efficiency of the proposed method.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In recent years, the trend in mechanical systems has been toward high speed and
lightweight ones in many industrial machines. These conditions can cause trouble of a
non-linear vibration in mechanical systems. Hence, it has become important to consider
the non-linear characteristics in vibration analysis, design of the structure system.
Iwatsubo et al. [1, 2] have proposed a new method to analyze the vibration of a multi-
degrees-of-freedom (m-d.o.f.) non-linear mechanical system. Moon et al. [3, 4] have
reported study on the vibration of mechanical system to analyze the dynamic problems of
non-linear m-d.o.f. systems. They developed the SSM technique to reduce the overall size
of the problem for the non-linear structure, and obtained approximate solutions of the
non-linear system using a perturbation method.

On the other hand, it is necessary that a high-speed system used for the jet engine of an
aircraft, power plant turbine, etc. promptly pass a critical speed. Accordingly, the casing is
often modelled elastically to decrease the critical speed. When random process excites such
a mechanical system, it is possible that the casing is excited to contact with the bearing and
there is a danger that the bearing will be damaged. Therefore, the investigation of the
random response of rotating machinery is very important from the viewpoint of disaster
protection.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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Soni et al. [5] and Srinivasan et al. [6] have reported the earthquake analysis of rotor
system using the response spectrum method and time response method in deterministic
system. Matsushita et al. [7] and Azuma et al. [8] analyzed the seismic response of the rotor
system using the modal analysis method with real earthquake data. They used the real
earthquake data to analyze the linear response. From the viewpoint of the dynamic
response of mechanical system against random excitation, it can be treated as stochastic
problem. However, an approach to the vibration of non-linear rotor systems under seismic
waves has not yet been tried. Moreover, the reliability analysis of a non-linear rotor-
bearing-casing system utilizing a statistical approach to a seismic wave is not found in past
research.

Therefore, this paper proposes an analytical method for non-linear vibration and
reliability of mechanical system against a random excitation by applying the statistical
method. This paper deals the reliability of a non-linear mechanical system under the actual
random excitation, while regarding earthquake excitation as a stationary random process.
The possibility of failure is obtained by assuming that a failure of the system occurs when
the response crosses over the safe bounds. Then, several statistical properties that are of
interest in non-linear random vibration applications are reviewed.

2. METHOD OF ANALYSIS

The mechanical structure system with the non-linear restoring force of the system, which
is excited by earthquake, is considered as shown in Figure 1. The excitation is regarded as
a random process; hence, it is extremely difficult to obtain an exact solution. Thus,
solutions can be obtained approximately. It should be noted that the solution itself for
random inputs is not the ultimate goal in stochastic analysis of a non-linear system;
instead, more relevant information is the statistical properties of the amplitude of the
response. To elaborate, a non-linear system with the inputs, which are assumed to be a
Gaussian random process, is considered. Because of the non-linear characteristic, the
output is no longer a Gaussian random process; hence, the statistic characteristic of its
amplitude cannot be evaluated through the PDF (probability density function).

Therefore, an adequate method to evaluate the statistical properties of the response of a
non-linear structure system should be developed. For this reason, the random excitation is
approximated to Gaussian stationary process by reasonable procedures. Then, the non-
linear equation of motion is reinstated with approximated Gaussian process. After that,
Figure 1. Mechanical system for analysis.
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the perturbation theory is applied to solve non-linear equation of motion. Finally, the
statistics properties of nonlinear response are obtained.

2.1. NON-LINEAR SYSTEM EXCITED BY RANDOM PROCESS

For the simple explanation, equation of motion of the arbitrary mode of non-linear
system can be expressed as

.xx þ 2Bo0 ’xx þ o2
0x þ eo2

0x3 ¼ .XX 0; ð1Þ
where B; o0 are damping ratio and natural frequency respectively. e is a small parameter.
Equation (1) has a non-linear restoring force, which can be expressed in higher order terms
of the displacement, eo2

0x3: .XX 0 is random excitation, which has a spectrum density SNðOÞ:
Meaning of the stochastic analysis such as equation (1) is to decide the statistic
information of displacement x. Generally, the statistic characteristic of random process is
decided from the PDF and power spectrum density (PSD) function of the system.
Accordingly, for the probabilistic analysis of non-linear random response, PSD and PDF
of excitation forces should be obtained.

It is clear that ground acceleration is inherently non-stationary, treating a typical record
of earthquake induced ground acceleration [9]. However, if the principal shock duration is
limited to the period corresponding to the strong-motion portion over which the peak
structural response occurs, a stationary process appears to be a good approximation.
Hence, this study deals with the response of a non-linear system under ground excitation
of the stationary random process by considering the strong motion duration of the
earthquake.

Figure 2 shows the random excitation of the system and its PSD and PDF, which is
regarded as narrow band process. Important values of statistic properties are mean
(=�0�072) and peak frequency (=18�75 rad/s) and maximum value of acceleration
(175�89 gal). Figure 2(c) shows the corresponding erratic PSD and the fitted PSD function,
which shows relatively good agreement. The computed PSD is obtained from the part of
earthquake data during 3–18 s, which can be regarded as stationary process from the
viewpoint of the amplitude envelope of earthquake graph, as shown in Figure 2(b). The
functional form for the spectral density function of earthquake motion is

SNðOÞ ¼
o2

ga
2O2

o2
g � O2

� �2

þ4B2go2
gO

2
S2

0 ; ð2Þ

where og; Bg and S0 are a dominant frequency, damping ration of filter and spectrum
intensity of random process respectively. a is a maximum value of input. For instance, Taft
earthquake (1952) has values of Bg ¼ 0�41; og ¼ 18�75 rad=s; a ¼ 1�75 m=s2 and
S0=0�0132m2/sec3 respectively. From Figure 2(c), it is estimated that SNðOÞ can be
applicable to solve the response statistically.

PDF of input is obtained from the part of earthquake data during 0–50 s, during 3–18 s
and during 5–13 s, as shown in Figure 2(d). PDF which is obtained from the part of
earthquake data during 3–18 s shows a reasonable Gaussian distribution. The part of the
earthquake during 3–18 s has the mean (=�0�0062). Thereby, the strong part of
earthquake excitation process can be regarded as Gaussian stationary random process
with mean zero. The PDF can be expressed as

Pð .XX 0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps .XX 0

p exp �
.XX
2

0

2s2
.XX 0

 !
; ð3Þ
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Figure 2. Random excitation force and its PSD, PDF. (a) Taft earthquake (1952, S69E), (b) strong part of
earthquake (c) PSD function, (d) PSD function.
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where s2
.XX 0
; s .XX 0

are the variance of excitation and its root mean square. Then, non-linear
equation of motion can be reinstated as

.xx þ 2Bo0 ’xx þ o2
0x þ eo2

0x3 ¼ WðtÞ; ð4Þ

where W(t) is a Gaussian stationary narrow band random process with zero-mean. x(t) is
the stationary response of a linearly damped Duffing system subjected to a Gaussian
process excitation.

Here, x(t) is not Gaussian process, generally. However, if the system is lightly damped
and if the non-linearity is small (that is, e41), then x(t) is still expected to be a narrow
band random process, as shown in Figure 3, numerical example. The response has the
mean (=�0�0044). PDF of non-linear response shows a Gaussian distribution. Thus, the
response of Equation (4) can be analyzed statistically by applying the perturbation theory.
In Equation (4), x can be perturbed as x ¼ x0 þ ex1: This replaces the solution of the non-
linear random vibration problem represented by equation (4) with the solution of a series
of linear random vibration problems with the same differential form but different inputs

.xx0 þ 2Bo0 ’xx0 þ o2
0x0 ¼ WðtÞ; ð5Þ

.xx1 þ 2Bo0 ’xx1 þ o2
0x1 ¼ �o2

0x3
0 ¼ fpðx0Þ; ð6Þ

where fpðx0Þ ¼ o2
0x3

0: From equations (5) and (6), the approximating functions x(t) can be
obtained sequentially. Here, zeroth order approximation x0 is Gaussian process. Its
probabilistic characteristics can be obtained by classical methods of linear random
vibration. However, the characterization of x1 is less simple because the input is now a
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Figure 3. Non-linear response x, linear response x0 and their PDF (e¼ 0�3; B ¼ 0�1; o¼ 5�23). (a) Time
response, (b) PDF of non-linear response, (c) PDF of linear response.
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non-Gaussian process whose mean and covariance function are not generally available in
a closed form. Moreover, the determination of the second moment characterization of the
approximate solution x ¼ x0 þ ex1 also requires the correlation function of x0, x1, which is
not readily available. In handling this problem, the objective is the determination of the
stationary mean and covariance function of the first order approximation, as given in
equation (6). Covariance function becomes due to its stationary characteristic

Efxðt þ tÞxðtÞg ¼RðtÞ
¼Efx0ðt þ tÞx0ðtÞg þ eEfx0ðt þ tÞx1ðtÞg þ eEfx1ðt þ tÞx0ðtÞg; ð7Þ

where each term can be obtained from the random vibration of linear system as

Efx0ðt þ tÞx0ðtÞg ¼
Z 1

0

Z 1

0

EfWðt þ t� y1ÞWðt � y2Þghðy1Þhðy2Þ dy1 dy2; ð8Þ

Efx0ðt þ tÞx1ðtÞg ¼ �
Z 1

0

Z 1

0

EfWðt þ t� y1Þfpðt � y2Þghðy1Þhðy2Þ dy1 dy2; ð9Þ

Efx1ðt þ tÞx0ðtÞg ¼ �
Z 1

0

Z 1

0

EfWðt � y1Þfpðt þ t� y2Þghðy1Þhðy2Þ dy1 dy2; ð10Þ

where h(�) is the impulse response function corresponding to e ¼ 0: The determination of
the expectations in equations (8)–(10) involve lengthy but straightforward calculations of
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expectations of polynomials in Gaussian variables. Thus the covariance function of the
non-linear response can be evaluated. Then, the spectral density of the non-linear response
is obtained by taking the Fourier transform of equation (7).

SxðOÞ ¼ SNðOÞ HðOÞj j2 1 � 6eo2
0s

2
x0

RefHðOÞg
h i

; ð11Þ

where s2
x0

is the stationary variance of the linear response. HðOÞ is frequency response
function of linear equation between the excitation and the displacement of response. The
corresponding variance can be obtained from the covariance RðtÞ of the system by letting
t ¼ 0; which is the same value of the mean-square response of the non-linear vibration.
Since the mean response, E½xðtÞ�; is zero, the variance is equal to the second moment
E[x(t)]

E½x2ðtÞ� ¼ Rð0Þ ¼ s2
x0

1 � 6eo2
0

Z 1

0

fRðtÞhðtÞg dt

 �

: ð12Þ

The mean-square value of the linear response in terms of the system response function and
the spectral density of the input is

s2
x0

¼
Z 1

0

SNðOÞ HðOÞj j2 dO: ð13Þ

This procedure is applied to analyze a complex M-d.o.f. non-linear system.

2.2. RELIABILITY ANALYSIS BY CROSSING THEORY

Here, reliability analysis through the crossing theory is considered. Unsatisfactory
performance is assumed to be caused by excessive deformation by a gradual accumulation
of damage under cyclic loading. The reliability of structural systems depends primarily on
crossing characteristics of response process representing deformations. The crossings of
response correspond to crossings of level X of response with positive slope or X-
upcrossings of x(t). The mean X-upcrossing rate of x(t) is

uþX ðtÞ ¼ Ef ’xxðtÞ þ jxðtÞ ¼ XgpðX ; tÞ; ð14Þ

where p(X, t), denotes the PDF of fxðtÞ; ’xxðtÞg; which can be obtained using techniques for
analyzing the response of linear. Note that uþX ðtÞ ¼ uþX is time-invariant for stationary
response. The mean X-upcrossing rate of the non-linear displacement x ¼ x0 þ ex1 can be
obtained as

uþX ðtÞ ¼
o0sx0

ffiffiffi
e
p

r

K1=4
1

8es2
x0

 � exp � 1

8es2
x0

 �
exp � 1

2s2
x0

x2 þ e
2

x4
� � �

; ð15Þ

where K1/4 is the modified Bessel function of order 1
4:

2.3. MODELLING OF A COMPLEX NON-LINEAR STRUCTURE

For the analysis, the system shown in Figure 1 is considered as a mechanical system. The
rotor has non-linearity with respect to its material property. For the dynamic analysis of
complex systems, the SSM can be applied. The overall system is divided into three
components, i.e., the rotor is the non-linear component, the casing is the linear
component, and the bearing is the assembling component. The acceleration of gravity is
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ignored for simplicity of analysis. The rotor and casing components are modeled using
finite element method (FEM).

The co-ordinates of the rotor-bearing-casing system are shown in Figure 1. The Or-
XrYrZr co-ordinate system is fixed in rotor, such that the origin coincides with the center
of the shaft where the Xr-axis is vertically upwards, the Yr-axis is horizontal and
perpendicular to the shaft, and the Zr-axis is along shaft. The Oc-XcYcZc co-ordinate
system is fixed in casing. The O0-X0Y0Z0 is an absolute co-ordinate system, which is fixed
in basement. The Ur(=Xr�Xc, Yr�Yc, Zr�Zc) is a relative displacement between rotor
and casing. The Uc(=Xc�X0, Yc�Y0, Zc�Z0 ) is a relative displacement between casing
and basement. .XX 0 is an acceleration of the earthquake input.

2.4. MODELLING OF NON-LINEAR COMPONENT

In the current rotating machinery, the non-linear vibration phenomena sometimes occur
in the shrinkage fit rotor, assembly rotor, power plant rotor with coil, and in high polymer
rotor. These phenomena can be modelled with a non-linear restoring force, which can be
expressed in higher order terms of the displacement. To apply the SSM to those complex
system, equation of motion is obtained for the non-linear component [1–4]. The external
force is considered as the unbalance force and the earthquake. Internal force is considered
because the non-linear component can be synthesized through the internal force with the
other components.

½1M�f1 .UUrg þ ½1K �f1
Urg þ e½KN �f1

U3
r g

¼ f1
FuðtÞg þ f1

FEg þ f1
Fbg; ð16Þ

where ½1M�; ½1K � and ½KN � are a mass matrix, stiffness matrix and non-linear stiffness term
respectively. f1

FuðtÞg; f1
Fbg are an unbalance excitation of rotor and an internal force

vector. The earthquake force is

f1
FEg ¼ �½1M�fIgf .XX 0g; ð17Þ

where {I} is a vector which shows the direction. In order to apply modal analysis, modal
co-ordinate system f1xg is introduced by using the modal matrix ½1F� of the linear system.
Then, the displacement f1

Urg is transformed into the modal co-ordinate approximately as
[3, 4]

f1 .xxg þ ½n1o2
n�f

1xg þ e½n1kNn�f1x3g

¼ f1
fuðtÞg þ f1

fEg þ f1
fbg ð18Þ

where f1
fuðtÞg; f1

fbðtÞg and f1
fEg are an unbalance force, an internal force and an external

force against earthquake in modal co-ordinates respectively. ½n1o2
n�;e½

n1
kNn� are an

eigenvalue matrix and a non-linear term in modal co-ordinates.
According to the previous section, the earthquake can be expressed with approximated

Gaussian stationary random process W(t). For the simple expression of external force
equation to describe the SSM method, those external forces are expressed in a term as
f1

WðtÞg � f1
fuðtÞg þ f1

fEg: Thus equation (18) can be expressed in a compact form as

f1 .xxg þ ½n1o2
n�f

1xg þ e½n1kNn�f1x3g ¼ f1
WðtÞg þ f1

fbg: ð19Þ

Here, the perturbation method is applied to solve the non-linear equation. The small
variant e can be regarded as the perturbation parameter, because the variant e½n1kNn� is
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small relative to ½n1o2
n�: f

1xg can be expanded in terms of a series of e

f1xg ¼ f1xð0Þg þ ef1xð1Þg þ . . . ; ð20Þ

where superscripts (0), (1) denote the perturbation order. Then, the perturbed equations
are evaluated as

f1 .xx
ð0Þg þ ½n1o2

n�f
1xð0Þg ¼ f1

W ð0Þg þ f1
f
ð0Þ

b g;

f1 .xx
ð1Þg þ ½n1o2

n�f
1xð1Þg ¼ f1

fpð1xð0ÞÞg þ f1
f
ð1Þ

b g;
ð21Þ

where f1
fpð1xð0ÞÞg ¼ �½n1kNn� f1xð0Þ3g�f1

W ð0Þg is external force term, which is expressed in
perturbation zeroth order. f1

f
ð0Þ

b g and f1
f
ð1Þ

b g are perturbed internal forces, which are
obtained from the relation of f1

fbg ¼ f1
f
ð0Þ

b g þ ef1
f
ð1Þ

b g þ � � � :

2.5. EQUATIONS OF MOTION OF AN ASSEMBLED SYSTEM

To apply the SSM, the casing of rotor system is modelled as linear component and the
equation of motion is obtained readily. After the eigenvalue analysis, the displacement can
be transformed into modal co-ordinate as f2

Ucg � ½2F�f2xg: ½2F�; f2xg are a modal matrix
and modal co-ordinate of casing. Even the casing is linear system, this component is
perturbed as same as the non-linear component, because the higher order harmonic
oscillation which is occurred in the non-linear component is translated through the higher
order perturbed equation as [4]

f2 .xx
ð0Þg þ ½n2o2

n�f
2xð0Þg ¼ f2

W ð0Þg þ f2
f
ð0Þ

b g;

f2 .xx
ð1Þg þ ½n2o2

n�f
2xð1Þg ¼ f2

f
ð1Þ

b g;
ð22Þ

where f2
f
ð0Þ

b g; f2
f
ð1Þ

b g are the perturbed internal forces.
f2

W ð2Þg is the external force term, which is expressed with approximated Gaussian
stationary random process WðtÞ: Though the internal force, equation (22) can be
assembled with equation (21). As an assembling component in SSM, simple linear ball
bearings are considered. Generally, there is a damping term in the bearing, but it is ignored
in this study. The restoring force of the bearing is modelled as linear term, where the force
and displacement are expressed as

½1kb1�f1
Urbg ¼ f1

fbg; � ½2kb2�f2
Urbg ¼ f2

fbg; ð23Þ

where ½jkbj �ð j ¼ 1; 2Þ are bearing coefficients. f1
fbg; f2

fbg are the internal force vectors of
the non-linear component and linear component respectively. fj

Urbg is a relative
displacement between the rotor and casing corresponding to the bearing. To synthesize
each component through the assembling component, the order of equation is arranged.
The perturbation parameter e of the non-linear component is introduced. Then, the
displacement can be expressed as

fj
Urbg ¼ fj

U
ð0Þ
rb g þ efj

U
ð1Þ
rb g: ð24Þ

And the internal force vectors are perturbed as

fj
fbg ¼ fj

f
ð0Þ

b g þ e � fj
f
ð1Þ

b g: ð25Þ

In SSM, each component is synthesized to entire system. In order to synthesize each
component, equations (21), (22) and (25) are combined and rewritten according to the
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perturbation order eðlÞ ðl ¼ 0; 1Þ:

f.xxðlÞg þ ½ %KK ðlÞ�fxðlÞg ¼ fF ðlÞðtÞg; ð26Þ

fxðlÞg ¼ f1xðlÞgT; f1
U

ðlÞ
rb g

T; f2
U

ðlÞ
rb g

T; f2xðlÞgT
n oT

;

fFðtÞðlÞg ¼ f1
W ðlÞgT; f�1f

ðlÞ
b gT; f2

f
ðlÞ

b gT; f2
W ðlÞgT

n oT

and ½ %KK ðlÞ� is the stiffness matrix of the overall system, which is composed all of the
component stiffness. According to the synthesizing procedure of SSM, the reduced order
of degrees of freedom for overall system is obtained by modal truncation of each
component. The equation of order eðlÞ is obtained as

1 .xx
ðlÞ
i

2 .xx
ðlÞ
i

8<
:

9=
;þ

½1o2
i � þ ½a1� ½a2�
½a3� ½2o2

i � þ ½a4�

" # 1xðlÞi

2xðlÞi

( )
¼

1
f
ðlÞ
Z

2
f
ðlÞ
Z

( )
; ð27Þ

½a1� ¼ ½fb1�
T½1kb1�½fb1�; ½a2� ¼ ½fb1�

T½2kb1�½fb2�;

½a3� ¼ ½fb2�
T½1kb2�½fb1�; ½a4� ¼ ½fb2�

T½2kb2�½fb2�;

f1
f ðlÞ
Z g; f2

f ðlÞ
Z g

n oT

¼ ½fa1�
T � f1

W ð0ÞgT; ½fa2�
T � f2

W ð0ÞgT
n oT

where, ½faj � is the eigenvector matrix of each component except the assembling region.
½fbj � is the eigenvector matrix of the assembling region, which is derived from the
eigenvector of each substructure corresponding to its bearing. The external force term of
order eð1Þ is obtained as

f1
f ð1Þ
Z g; f2

f ð1Þ
Z g

n oT

¼ ½fa1�
T � f�½n1kNn�f1xð0Þ3gg þ ½fb1�

T � f1
f
ð1Þ

b g; ½fa2�
T � f0g þ ½fb2�

T � f2
f
ð1Þ

b g
n oT

:

3. EVALUATION OF SYSTEM PERFORMANCE

In this section, the statistical properties of non-linear system vibration are obtained, and
a reliability design is evaluated in a statistical sense.

3.1. STATISTICAL PROPERTIES OF NON-LINEAR RESPONSE

The response of non-linear random vibration is solved statistically in an overall system.
The earthquake is used as the excitation wave, which is regarded as the Gaussian
stationary random process, by considering the strong motion duration. When the
statistical properties of an earthquake are known, statistical properties of the system
response can be obtained.

After the eigenvalue analysis of the overall system with equation (27), the order eðlÞ co-
ordinate fZðlÞg of the overall system is introduced for modal analysis as

fxð0Þg � ½Ft�fZð0Þg; fxð1Þg � ½Ft�fZð1Þg: ð28Þ
where ½Ft� is the eigenvector matrix of the overall system. The equation of motion of order
eð0Þ is

.ZZð0Þi þ 2zioti ’ZZ
ð0Þ
i þ o2

tiZ
ð0Þ
i ¼ W

ð0Þ
Zi ; ði ¼ 1; 2; 3; . . . ; nÞ; ð29Þ



B.-Y. MOON AND B.-S. KANG278
where o2
ti is the eigenvalue of the overall system. W

ð0Þ
Zi is the external force term in modal

co-ordinates. The damping of the system is assumed to be the proportional damping of the
eigenvalue. According to the linear random vibration theory, the solution Zð0Þi ðtÞ of the
linear differential equation may be readily obtained. Then, the equation of motion of
order eð1Þ can be described as

.ZZð1Þi þ 2zoti ’ZZ
ð1Þ
i þ o2

tiZ
ð1Þ
i ¼ f

ð1Þ
Zi ðZð0Þi Þ; ði ¼ 1; 2; . . . ; nÞ; ð30Þ

where f
ð1Þ
Zi ðZð0Þi Þð¼ �b2

i Z
ð0Þ3
i Þ is the external force term. b2

i is the non-linear coefficient. The
response is

Zð1Þi ðtÞ ¼ �b2
i

Z 1

0

Zð0Þ3i ðt � tÞhiðtÞ dt; ð31Þ

where hiðtÞ is the impulse response function of the linear system. Accordingly, the response
of a non-linear system can be evaluated as

Zi ¼ Zð0Þi þ eZð1Þi : ð32Þ

The equations of Zð0Þi ; Zð1Þi can be used to compute various statistical properties of the
response. The covariance of the non-linear response, computed to the first order of e; can
be obtained as

RZiðtÞ ¼
Z 1

0

1
2S

ð0Þ
Ni ðOÞ HiðOÞj j2�3

2es
ð0Þ2
Zi S

ð0Þ
Ni ðOÞ HiðOÞj j2H�

i ðOÞcosOt
n o

dO; ð33Þ

where H�
i ðOÞ is conjugate function of HiðOÞ: S

ð0Þ
Ni ðOÞ is the spectral density of the

excitation. Then, the spectral density SZiðOÞ of the non-linear response is obtained by
taking the Fourier transform of the covariance function as

SZiðSZiðOÞ ¼ S
ð0Þ
Ni ðOÞ HiðOÞj j2 1 � 6eb2

i s
ð0Þ2
Zi Re HiðOÞ½ �

h i
; ð34Þ

where Re½HiðOÞ� is the real part of HiðOÞ: The corresponding variance can be obtained
from the covariance RZiðtÞ of the system by letting t ¼ 0; which is the same value of the
mean-square response of the non-linear vibration

s2
Zi ¼ sð0Þ2Zi 1 � 6eb2

i

Z 1

0

fRZiðtÞhiðtÞg dt

 �

: ð35Þ

The stationary variance sð0Þ2Zi is the mean-square value of the linear response. Examining
s2
Zi; it appears that if the system is non-linear with light damping, weak non-linearity and

the excitation random process is Gaussian stationary, then the response spectral density,
covariance function, and mean-square value, can all be calculated from the knowledge of
the spectral density of the excitation process and the magnitude of the frequency response
HiðOÞj j:

3.2. RELIABILITY ANALYSIS BY POSSIBILITY OF FAILURE

Generally, the evaluation of seismic response of rotating machinery is concerned with
the maintenance of the operating ability against the seismic excitation. This can be verified
by the possibility of failure by the contact between the bearing and casing. The possibility
of failure is obtained by assuming that a failure of the system occurs when the response
crosses over the safe bound, as shown in Figure 4. The displacement Xr is used as the
standard point for the evaluation of the failure problem. The probability that Xr exceeds
safe set B gives the probability of the system failure, which is constrained by casing to
prevent the damage of bearing. B is the limited amplitude of the rotor. The mean B-



Figure 4. Possibility of failure problem.
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upcrossing rate of the non-linear vibration of the system can be obtained as

uþB ðtÞ ¼
ot0s

ð0Þ
Z0

ffiffiffi
e
p

r

K1=4
1

8esð0Þ2Z0

 ! exp � 1

8esð0Þ2Z0

 !
exp � 1

2sð0Þ2Z0

B2 þ e
2

B4
� � !

; ð36Þ

where ot0 is first the natural frequency of the overall system. sð0Þ2Z0
represents the stationary

variance of first modal displacement when (aa=0. sð0ÞZ0
is the root mean square of the

displacement of the first modal response.

4. NUMERICAL RESULTS

Numerical calculation results of non-linear stochastic system are obtained under the
random excitation while the system is rotating near the critical speed of the system. Non-
linear characteristics of the random response are observed by the proposed analytical
method and those are compared with the results by the numerical simulation.

4.1. MODEL FOR ANALYSIS

As an analysis model, a non-linear rotor system, which is shown in Figure 1, is
considered. The rotor is considered as a uniform beam and the casing is also considered as
a uniform beam approximately for the simplicity of calculation. The casing is constrained
to a foundation at both ends of the casing. As a support, ball bearing is considered for
aircraft engine turbine or power plant turbine. The properties of the rotor system are
tabulated in Table 1.

The rotor is modelled by the 20 beam elements and the casing is also modelled by the 20
beam elements. The modal damping ratios of the system is given by z¼ 0�05: To check the
computing accuracy of SSM, the natural frequency of the rotor system is calculated by
using FEM, and the results are compared with those calculated by using SSM. The rotor
has 84 d.o.f. because it has 21 nodes and there are 4 variables per mode. The casing also
has 84 d.o.f. so that the total degrees of freedom are 168. Table 2 shows the natural
frequencies of the rotor system calculated by FEM and SSM. In the analysis of SSM, the
numbers of adopted modes in the rotor and casing are changed. The natural frequencies,



Table 1

Properties of the rotor system

Rotor, casing length (mm) 800
Rotor diameter (mm) 16
Casing diameter (mm) 50
Young’s modulus (N/m2) 2�1� 1011

Density of rotor and casing (kg/m3) 7�81� 103

Bearing coefficient (N/m) 1�0� 106

Constrain coefficient (N/m) 1�0� 1010

Table 2

Natural frequency of rotor system (Hz)

Mode No. FEM SSM

168 (d.o.f.) 12/12 20/20 40/40

1 93�08 92�10 92�64 92�98
2 164�26 162�52 164�17 164�54
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which are close to the ones by FEM, can be obtained by SSM when the numbers of
adopted modes are increased.

When 20 modes are adopted in the rotor and casing, the error is less than 0�4%. To keep
the accuracy of the lower natural frequencies, it is regarded that 20 modes of both
components are sufficient to this analysis. Thus, 20 modes of each component are adapted
to further response analysis for economic calculation. In the table (A/B), A, B stands for
adopted mode number from the shaft/casing element.

The exciting force of the rotor caused by unbalance is assumed as FuðtÞ ¼
F0O2 cos ðOt þ fÞ in x direction, where F0; f are unbalance and phase angle, respectively.
Rotating speed (O¼ 540 rad=s) is assumed to be near first critical speed (ot1¼ 583 rad=s)
of the rotor system. The unbalance of the rotor system is located at the middle of the shaft
with a value of 0�044Kgm/(rad/s)2.

4.2. RESPONSE OF THE NON-LINEAR SYSTEM

First, the linear response of the system against the random excitation is examined. The
responses are computed by SSM with modal analysis procedure, which are shown in
Figure 5. The statistic properties of the system response are examined. As can be noticed
from Figure 5(a), the response includes the earthquake response of the system. Probability
density of the system is shown in Figure 5(b) in accordance with relative amplitude of the
system. Average value of response is 0�000186, which shows almost zero mean. These
properties prove that the response is Gaussian stationary random process. In Figure 5(c),
the power spectrum of the response is shown. It can be observed that a typical earthquake
response power spectrum is obtained, which has a low-frequency component. Spectrum
shows the fact that response is in a short period and predominant frequency is in a lower
frequency where the peak frequency of the response is 28�27 rad/s. The simulated PSD
shows well fitted with the analytical response of PSD SZðOÞ; which is obtained when e ¼ 0:
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Figure 5. Linear response and its probabilistic properties. (a) Response of rotor, (b) Gaussian distribution,
(c) power spectrum density.
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The spectral density is related to the stationary variance sð0Þ2Z0
¼ 0�0059; which is the same

as the mean-square value of the linear response.
Here, the statistical properties of non-linear random vibration of the stochastic system

versus the strong motion duration of excitation are investigated. Correlation, spectrum
density and its variances, which are important to reliability analysis, are considered. Those
properties of non-linear responses are calculated according to the procedure of non-linear
random vibration analysis, which is computed to the perturbation first order. Spectrum of
harmonic excitation and earthquake excitation are obtained and applied to the system. If
the dual inputs are uncorrelated, then the cross-spectral density function of earthquake
and unbalance excitation terms in the equation of spectral density become zero. Then, the
autocorrelation and the spectral density of the non-linear response are obtained
theoretically. It is regarded that the non-linear response depends on the size of the
perturbation parameter, which shows nonlinear characteristics. To this end, two kinds of
analysis are carried out, i.e., the perturbation parameters are set to e¼ 0�2; 0�5. In Figure 6,
the PSD of the non-linear responses of the system at the middle of shaft and casing is
shown with various non-linear parameters. The response of SSM is calculated by taking 20
modes. When the non-linear parameter is e¼ 0�0; the PSD is equal to a linear response.
The each PSD of the system, such as rotor and casing, shows a characteristic of
earthquake random process. Investigation of the PSD reveals that the PSD is smaller when
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Figure 6. Comparing PSD of the responses. (a) Spectrum of rotor response (L), (b) spectrum of rotor response
(C), (c) spectrum of casing response (L), (d) spectrum of casing response (C).
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the perturbation parameter becomes bigger, which shows the non-linear characteristic of
response. In the figure, (L), (C) stand for the left end nodal point and center of model.

Variance of the non-linear response, which is important value of reliability analysis in
stochastic system, is evaluated from the non-linear response. Figure 7(a) shows the
variance of the non-linear response at the middle of rotor by changing its numbers of
adopting modes 20, 40. The calculated variances are investigated for various values of
non-linear parameter. To prove the computing efficiency, those values are compared with
the results of simulation, which is obtained with same calculation condition. The response
of simulation is calculated by direct integration of the equation of motion against the
excitation where the overall equation of motion of the system has 168 d.o.f. Investigation
of the variance reveals that the value shows a decrease with e in the spread of displacement
about equilibrium point when e ¼ 0: This is consistent with our intuition, which suggests
that stiffer systems exhibit smaller displacements, and with the observation that the system
stiffness increases with non-linear parameter. This result also reveals that the variance
displacement of a hardening spring non-linear system is always less than that for the
corresponding linear system.

Figure 7(b) shows the variance of the non-linear response at the middle of rotor by using
its numbers of adopting mode 20. The calculated variances are investigated for various
values of non-linear parameter against maximum values of exciting acceleration. To prove
the non-linear effect, those values are compared with the results of linear one, which is
obtained by same calculation condition. It is observed that according to the input level,
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variance of the responses become large. When the non-linear parameters become large,
then the response changes a lot.

Next, the computing time is compared to analyze the non-linear random vibration
versus the strong motion duration (=3–18 s) of excitation. The variances of response for
the values to be compared are used, as shown in Figure 7(a). The computer used in this
analysis is a LOGIX, IBM personal computer. In the case of the numerical simulation, it
takes 20min 45 s. But for the proposed method; it takes 5min 28 s, 7min 30 s to obtain the
result, when the number of adopting modes are 20, 40 respectively. As a result, it can be
shown that a drastic reduction in calculation time can be achieved, keeping its computing
accuracy. This is an important factor in the analysis of structural dynamics against
random excitation with a large number of degrees of freedom.

4.3. FAILURE POSSIBILITY

Reliability of the system can be obtained by supposing that the failure of the system
occurs when the system exceeds the limit amplitude. To consider this, the limit of response
(B) at rotor is regarded, which is constrained by casing to prevent the damage of bearing.
This condition can be used to define a safe set. In this case, performance of the system
depends primarily on crossing characteristics of safe set of response. Thus, the concept for
mean crossing rate of safe set is applied to demonstrate the reliability of the system, as
shown in Figure 8.

Figure 8 shows mean upcrossing rates of stationary non-linear responses for several
values of non-linear parameter. The mean upcrossing rate decreases with threshold B due
to a rapid reduction of probability density of the process reaching B. The mean upcrossing
rate decreases more when non-linear parameters become large. These rates of the non-
linear response can be used to approximate and bound the probability that the response or
the restoring force does not exceed critical values of system. The reliability coincides with
the mean upcrossing rate that the response belongs to the safe set. Also, the probability of
failure can be obtained by the complement of obtained reliability.
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5. CONCLUSIONS

In this paper, the random vibration analysis method of a non-linear stochastic system
was theoretically formulated when the actual random excitation is regarded as a Gaussian
stationary random process. The formulation is concerned with reducing the number of
degrees of freedom for each component by modal substitution. All of the components are
then assembled together and the random response of the overall system is analyzed
statistically against earthquake excitation. It is shown that non-linear random responses
could be efficiently calculated according to the selected number of vibration modes.
Several statistical properties of the random responses that are of interest in non-linear
random vibration applications are reviewed. The variance value of the non-linear random
response is obtained economically, which is important in evaluating the reliability of the
system. The results reported herein provide a better understanding of the non-linear
random vibration. Moreover, it is believed that those properties of the results can be
utilized in the dynamic design of the non-linear stochastic system.
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